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The effects of thermally insulating boundaries on rapidly and almost rigidly rotating 
gas flows are examined. It is shown that, on a thermally insulating boundary, all 
boundary layers disappear to zeroth order and that the geostrophic flow alone satisfies 
the kinematical boundary condition on such a boundary. The temperature gradient of 
the geostrophic flow is on a horizontal thermally insulating boundary corrected by a 
weak Ekman layer of strength E3 where E is the Ekman number. On a vertical ther- 
mally insulating boundary, the temperature gradient of the geostrophic flow is in 
the general case corrected by Ea and E* Stewartson layers of strengths Ea and E* 
respectively. 

1. Introduction 
The study of rapidly rotating gas flows, which is a relatively new field of research in 

fluid mechanics, is motivated by the technologically important need to understand the 
flow in gas centrifuges for uranium enrichment. In such centrifuges, weak axial flows, 
which are superposed on the rigid rotation, are used to control the diffusion process. It 
turns out that the eEciency of such a centrifuge is very sensitive to the spatial struc- 
ture of the perturbation flow. The fundamental theoretical study of such flows is the 
paper by Sakurai & Matsuda (1974). These authors showed that the geostrophic part 
of the flow is partly governed by a balance of thermal diffusion and viscous diffusion of 
angular momentum and partly by a non-diffusive balance between the Coriolis force, 
the pressure gradient and the buoyancy force. The flow is, roughly speaking, in this 
respect of a similar kind as a geostrophic flow of an axially stratified Boussinesq fluid. 
The structure of the boundary layers, however, was shown by Sakurai & Matsuda 
(1974) to be very much the same as that in a rotating flow of ahomogeneous fluid. 
Since the work by Sakurai & Matsuda (1974) was published, a large number of 
papers dealing with different aspects of rapidly rotating gases have appeared in the 
literature. The status of the subject up to 1977 is summarized in Soubbaramayer 
(1977). 

In the problem considered by Sakurai & Matsuda (1974), the solid walls of the 
vessel containing the gas were assumed to be perfectly thermally conducting. The 
effects of thermally insulating walls were investigated by Matsuda, Hashimoto & 
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Takeda (1976)) Matsuda & Hashimoto (1976), Hashimoto (1977), Matsuda (1977), 
Matsuda & Hashimoto (1978) and Matsuda & Takeda (1978). These authors con- 
sidered a cylindrical container having an insulated cylindrical wall and conducting top 
and bottom walls or a conducting cylindrical wall and insulating top and bottom walls. 
The mathematical method used was the classical boundary-layer approach for small 
Ekman numbers supplemented with the assumption that the gas is very heavy. More 
precisely, i t  was assumed that y, the ratio between the specific heats at constant pres- 
sure and volume, is nearly equal to one in the following sense, 

7- 1 == O(EA),  (1-1) 

where E is the Ekman number. The constant h is equal to & (Matsuda & Hashimoto 
1976) or 4 (Matsuda & Hashimoto 1978) if the top and bottom walls are insulating, and 
equal to 3 if the cylindrical wall is insulating (Matsuda et al. 1976; Matsuda & Takeda 
1978). The strengths of the boundary layers were assumed to be of order unity. 
Under these assumptions, i t  was shown that, among other things, the flow in the 
Stewartson E* layer tends to be suppressed if the cylindrical wall is insulating com- 
pared to the case where this wall is conducting. If the top and bottom waIls are 
insulating, the geostrophic axial flow and the flow in the Ekman layers become 
weak. 

The perturbation method used in the aforementioned papers has, as was pointed out 
by Matsuda (1977), a somewhat restricted range of validity. For instance, the quantity 
(y  - 1) appears in the governing equations combined with the Mach number M for the 
motion of the centrifuge periphery as M2(y- 1). This means that the method des- 
cribed above can only be expected to give accurate results for M 2  being of order unity. 
In  practical cases, however, M2 is usually a large number, which means that (y - 1) M2 

is of order unity or larger. From a fundamental point of view, it would also be desirable 
to  predict the flow of any gas, not only very heavy ones. 

The present paper gives a method for calculating the effect of insulating boundaries 
on geostrophic flows in rapidly rotating gases without making use of the assumption 
that the gas is heavy. It is shown that this can be done by requiring that the geostrophic 
flow satisfies the zeroth order kinematical boundary conditions on thermally insulating 
boundaries and that the thermal boundary conditions on these boundaries are correc- 
ted by weak boundary layers. The latter condition is shown to imply that the Ekman 
layers are of order E3 and that the Stewartson E i  and Ei  layers are of order E )  and Ea, 
respectively. An expansion scheme along these lines was briefly outlined by Hashi- 
mot0 (1977) for a container having insulating top and bottom walls. A similar situation 
prevails in an axially stratified Boussinesq fluid, where the Ekman layer at  an insulated 
vertical wall is of order E3 (Barcilon & Pedlosky 1966). 

The mathematical statement of the problem is given in $2. The flow is assumed to be 
driven by a symmetric or an antisymmetric differential rotation of the top and bottom 
walls and an arbitrary temperature distribution on the thermally conducting walls. 
Numerical examples are presented for the geostrophic part of the flow. In  addition to 
the kinds of containers considered by Matsuda and his co-workers in the papers 
mentioned above, which in this work are considered in $0 4 and 5 ,  the case where every 
wall is thermally insulating is considered in $ 3 .  The results are summarized and 
compared with earlier results in $6.  In  order to make the presentation of the results 
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for the geostrophic flow in $5 3,4 and 5 reasonably compact, most of the details regard- 
ing the vertical boundary layers are given in appendix 1.  Appendix 2 gives some infor- 
mation about the numerical method used. 

2. Statement of the problem 
Consider an axisymmetric closed container, which consists of a cylindrical wall and 

flat top and bottom walls. In  what follows, the top and bottom walls will frequently 
be referred to as the horizontal walls and the cylindrical wall will be called the 
vertical wall. Regarding the thermal properties of the walls, three cases will be 
considered : 

(i) all walls are insulated; 
(ii) the horizontal walls are insulated and the vertical wall is conducting; 
(iii) the horizontal walls are conducting and the vertical wall is insulated. 

The cylindrical vessel contains a viscous, thermally conducting perfect gas of con- 
stant temperature T,*, and rotates around its axis of symmetry with the constant 
angular velocity Q. The rate of rotation is assumed to be very large in the sense that 
the density stratification of the gas in the container can be considered to be caused by 
the centrifugal force field alone. Effects of gravity are thus neglected. The density field 
p& in the rigidly rotating gas can then be written as 

where starred variables are dimensional and 

r* = distance from the axis of rotation, 

rg* = distance from the axis of rotation to the periphery, 

y = ratio of specific heats at constant pressure and volume, 

( 2 . 2 4  

(2 .2c )  

(2 .2b )  

r: Q 
Mach number for the motion of the periphery, ( 2 . 2 4  

(YRTtOP’ 
M =  

R = the gas constant. (2 .2e )  

The motion of the rigidly rotating gas is assumed to be perturbed by a slight, steady, 
differential rotation of the horizontal walls. The differential rotation can be either 
symmetric or antisymmetric. The angular velocity of the top is thus Q + AQ, AQ > 0, 
and that of the bottom LI & AQ. The Rossby number B is defined as 

ALI 
Q *  

E = -  

e is assumed to be sufficiently small for linear theory to be valid. The height of the con- 
tainer is 2 H .  H is chosen as the length scale in the problem. A cylindrical co-ordinate 
system ( r ,  $, z) ,  where r and z are non-dimensional, will be used. The z axis is taken to 
coincide with the axis of rotation and the co-ordinate system rotates with the con- 
tainer. The location of the origin is chosen such that the container encloses the volume 
121 < 1 , ~  < To. 

4-2 
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The non-dimensional aspect ratio of the container is thus ro. If starred quantities 
are dimensional, suitable definitions for the non-dimensional dependent variabies 
describing the perturbed flow are 

U* 

€ H Q  
u = (u, v, w )  = - velocity, ( 2 . 3 ~ )  

density, 

temperature. 
T* T=- 
€T& 

(2 .3b)  

( 2 . 3 ~ )  

( 2 . 3 d )  

Apart from the factor e-l, the basic density and temperature fields are made non- 
dimensional as given by (2.3c-d). Using the notation given above, the linearized 
non-dimensional governing equations for axisymmetric flow become 

-2p , , v - rp  = 

2poOu = E (V2-;) v, 

O = - - + E V 2 w ,  aP 

- - ~ ~ P o o ~ ) + P o o ~  r ar = 0, 

a2 

l a  aW 

- 4a2rpQ0 u = EV2T, 

p = -  +:) (P + Po0 T), 
4Ya 

1 2a2y 
where (r2 - rg) 

is the non-dimensional basic density field and 

i a  a a2 

r ar ar az2’ 
V2 = - - r - + -  

E =  P Ekman number at  the periphery, 
P;lb(r:) H2Q 

p dynamic shear viscosity, 

a ( y - - l ) M 2  
a 2  = 

4rg .=- Pycw Prandtl number, 
k 

c, 

k thermal conductivity. 

specific heat at  constant volume, 

( 2 . 4 ~ )  

(2 .4b)  

( 2 . 4 ~ )  

( 2 . 4 d )  

(2 .4e)  

(2 .4 . f )  

(2 .5)  

( 2 . 6 ~ )  

(2 .6b )  

( 2 . 6 ~ )  
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p, k, y and cv are assumed to be constants. The Ekman number E is assumed to be 
very small, whereas a2, IJ) y and ro are assumed to be of order unity. In  the present 
problem, viscous effects due to pure dilational motions can be shown to be of higher 
order and are therefore neglected in (2 .4u-c) .  If thermally insulating boundaries are 
denoted by Xi and thermally conducting boundaries by S,, the system of equations 
(2 .4- f )  are to be solved subject to the following boundary conditions: 

U ( T 0 , Z )  = 0, IzI < 1, ( 2 . 7 ~ )  

U ( T ,  1) = re6) 0 < r G yo, (2 .7b )  

( 2 . 7 ~ )  

n.VT=O on Si, ( 2 . 7 d )  

T = T,  on S,, (2 .7e )  

where n is a unit vector perpendicular to Si and T, is the prescribed temperature 
distribution on S,. 

U ( T ,  - 1) = & re4) 0 < r < ro) 

3. Insulating horizontal and vertical walls 
It is assumed that the geostrophic part of the flow, i.e. the flow outside the boundary 

layers, can be mathematically described by an asymptotic power series in E6 as follows: 
N - l  

n=O 
(u ,v ,w)P,P)T)  = C En'2(Un)vn,WntPn)Pn)Tn)+O(EN12). (3 .1 )  

By substitution of (3 .1 )  into ( 2 . 4 ~ - f ) ,  one finds the following equations: 

uo = u1= wo = 0) (3 .2 )  

2p 00 u 2 - - ( v2-- ;2) vo) 

( 3 . 3 a )  

(3 .3b)  

(3 .3c)  

( 3 . 3 d )  

- 4a2rpO0 u2 = V2To, (3 .3e )  

Po = u* (Po + Po0 To). 

From (3 .3b )  and (3 .3e )  one finds that 

V ~ T ~  -+ 2a+(V2 - :) vo = 0. (3 .4 )  

Equation (3.4) was first given in the literature by Sakurai & Matsuda (1974). From 
( 3 . 3 u ) ,  ( 3 . 3 f )  and ( 2 . 5 )  one can derive the following equation: 
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where qo is defined by 
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PO q o  = -. 
Po0 

According to (2 .5 )  and ( 3 . 3 ~ )  qo is a function of r only. From (3.4) and (3.5) one finds the 
following non-homogeneous elliptic partial differential equation for vo: 

where qo depends on vo in a so far unknown way. If the horizontal walls are conducting, 
qo can be calculated in terms of the prescribed swirl velocity and temperature on the 
horizontal walls by analysing the Ekman layers.? After considering the vertical 
boundary layers at r = ro, one then obtains a well-posed problem for the geostrophic 
part of the flow [Howard (private communication); Hashimoto 19771. It should be 
noted that considerable simplifications occur if the differential rotation of the horizon- 
tal walls is antisymmetric because in that case qo vanishes according to ( 3 . 3 ~ )  and 
(3.6).  This case was treated by Sakurai & Matsuda (1974). Also in the present case, 
qo can be determined by studying the Ekman layers and, for reference, some properties 
of the flow in these layers are therefore recapitulated below. The reader is referred to 
Sakurai & Matsuda (1974) for details. The boundary layer co-ordinate in the Ekman 
layers is defined as follows: 

1 T Z  6=-- 
EB ’ ( 3 . 8 ~ )  

where the minus sign refers to the top and the plus sign to the bottom. The dependent 
variables in the Ekman layers are denoted by a caret and are assumed to possess 
expansions of the form 

where an,Gn etc. are assumed to be functions of r and g. The following relations can 
then be shown to hold in the Ekman layers : 

8, = $o = = 0, (3.9) 

a. + WG, = ~ K Z V ,  exp [ - (1 + i) ~p $51, ( 3 . 1 0 ~ )  

(3.10b) 9, + 2a2r00 = 0, 

( 3 . 1 0 ~ )  

where K = (1 + a2r2)2, 

and V, is the Ekman layer swirl velocity evaluated a t  6 = 0. It is readily shown that 
order of magnitude consistency requires that V, is a real function of r .  From ( 3 . 1 0 ~ - b )  
one can show that 

3 ( r ,  0) = 2a2Kp,j0 r 5 ,  (3.11) 

which means that an Ekman layer of order unity is impossible because there would 
then be an axial heat flux of order E-4 a t  the horizontal walls instead of no axial heat 

t This expression is given in $5. 

a5 
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flux as required by (2.7~17). The geostrophic flow consequently has to fulfil the zeroth 
order kinematical boundary conditions (2.7b-c) on the horizontal wall by itself. The 
thermal boundary condition (2.7d) will be taken care of by Ekman layers of order E3. 
The indices of the lowest-order Ekman layer quantities in (3.8 b)  are therefore increased 
by one in what follows. A similar situation was found by Barcilon & Pedlosky (1966) 
for vertical Ekman layers in an axially stratified Boussinesq fluid. In  the present case, 
it  is readily shown that the weak horizontal Ekman layers will drive a geostrophic flow 
of order E3. Furthermore, the geostrophic axial velocity will be of order E.  According 
to (2.7b-c) and (2.7d), the following relations must hold at the horizontal walls: 

w2(r, k 1) +a&, 0) = 0, ( 3 . 1 2 ~ )  

(3.12 b) 

where no notational distinction has been made between the Ekman layers at  the top 
and the bottom walls. From (3.12a), (3 .10~-c )  and (3.12b) one finds that 

1 a2To 
w&, k 1) = - - ( r ,  k 1). 

4a2rpoo a d z  

Next, consider the equation of continuity for the lowest-order geostrophic flow 

(3.13) 

(3.14) 

For notational simplicity, vertical averages will in what follows be denoted by ( ), e.g., 

(u2) = 'sl u2dx. 
2 -1 

Integration of (3.14) with respect to r and z gives 

(3.15) 
J O  

Subst'itution of (3.13) and the vertical avera,ge of (3.3b) into (3.15) gives 

aT0 
avo iiz I 2 az 

2a2r - - - r { ? . ~ ~ ) + - ~ ( r , l ) - - ( r ,  d l d  a** - 1 )  +-(r,l)--(r,  - 1 ) = O .  (3.16) 
[dr r dr 

If one takes the vertical average of (3.4) and combines the result with (3.16), one finds 
the following relation: 

whose regular solution is 

d d  
- r -  (To) = 0, 
dr dr 

(To) = 0, 

(3.17) 

(3.18) 

where the constant of integration has been set equal to zero, which can be done without 
loss of generality by choosing a suitable reference temperature. From (3.18) and (3.5) 
one then finds that 

dqo - = 2(vo), ( 3 . 1 9 ~ )  
dr  

(3.1 9 b) 
2 

To = ; (vo - (vo)). 
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The geostrophic flow can then, according to (3.7) and (3.19a), be calculated from the 
following integro-partial differential equation: 

(3.20) 

In  order to determine the boundary conditions at the vertical wall for the solution of 
(3.20), the Stewartson boundary layers of thickness Ef and E* have to be considered. 
The E* layer occurs only if the differential rotation is symmetric. However, as the 
derivation of the boundary conditions at  the vertical wall follows very much along the 
same lines as that for the horizontal walls, only a brief discussion will be given in this 
section. Some further details are given in appendix 1. 

In  both the Ef and E* layers, the following relation holds (cf. 3.10b): 

P+ 2a2rOv" = 0, (3.21) 

where tildes denote quantities in either one of the layers (e.g. see Bark & Bark 1976). As 
in the Ekman layer case, (3.21) can be shown to imply that the geostrophic flow has to 
fulfil the zeroth order kinematic boundary condition (2.7 a )  also at the vertical wall and 
that higher-order vertical boundary layers have to take care of the thermal boundary 
condition (2.7d). As in the homogeneous fluid case, the vertical averages of the geo- 
strophic flow are to be corrected by the Ef layer and the remaining parts by the E* 
layer. However, in the present case (To) is zero [see (3.18)]. This means that there will 
be no E )  layer of order E*. There will, though, be a Ef layer of order E* to adjust the 
vertically averaged geostrophic radial mass flux at the periphery. The E* layer will be 
of order E* and corrects aTo/ar. 

The solution of (3.20) thus has to  fulfil the following boundary conditions: 

vo(r, 1) = r ,  0 6 r < ro, ( 3 . 2 2 ~ )  

(3.223) 

uo(ro)z) = 0, IzI < In ( 3 . 2 2 ~ )  

Some numerical results are shown in figures 1-7. The numerical method is briefly des- 
cribed in appendix 2. In  all the numerical examples given in this work, the values of y 
and c are those for UF, at room temperature, i.e. y = 1.067, u = 0.95. 

It will be shown in $ 4  that the solutions shown in figures 1-7 are also valid if the 
vertical wall is conducting and isothermal. Figure 1 shows the vertically averaged 
local angular velocity field (vo)/r for the symmetric case for different values of the 
Mach number. The results in figure I should be compared with the corresponding homo- 
geneous fluid case where the geostrophic flow is everywhere a rigid rotation with the 
same angular velocity as the top and bottom walls (Stewartson 1957). Figure I shows 
that, for small Mach numbers, the geostrophic flow is very nearly the same as in the 
homogeneous fluid case apart from the immediate neighbourhood of the periphery. 
The reason for the finite difference near the periphery between the zero Mach number 
limit, i.e. the homogeneous fluid case, and the small but non-zero Mach number case is, 
of course, due to the completely different structure of the Ef layer in the two cases. 
Figure 2 shows the local angular velocity field in the symmetric case for a low Mach 
number. 

wo(r, - 1) = k r,  0 < r < ro, 
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1.5 

I 

- - 

T 

FIGURE 2. Insulated horizontal walls. u0/r for t,he symmetric case. A1 = 0.1. 

Because the container is thermally insulated and viscous dissipation is neglected, 
temperature differences between different parts of the gas can only be produced by 
local compression or expansion, which occurs for gas particles moving radially in the 
basic pressure field. It should be pointed out that the t'emperahre field is also affected 
by thermal diffusion. Figures 3 and 4 show, for the symmetric case, a comparison 
between the temperature fields for M = 5 and M = 10. There is, in both cases, a clock- 
wise meridional circulation. Near z = 0 the gas moves radially inwards, whereby expan- 
sion and cooling takes place. The opposite process occurs near the top. The tempera- 
ture differences are, as expected, larger for the M = 10 case. The corresponding graphs 
of the local angular velocity field v,/r are shown in figures 5 and 6, from which i t  can be 
seen that the deviation from rigid rotation is larger for the M = 10 case. Figure 7 shows 
vo/r for M = 10 for the antisymmetric case. It was found from numerical experiments 
that  the flow field depends rather weakly on the Mach number in the antisymmetric 
case whereas this is not so for the symmetric case. 
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r 

FIQ~RE 3. Insulated horizontal walls. Tu for the symmetric case. M = 5. 

0.20 

0 0.5 
r 

0 

FIGURE 4. Insulated horizontal walls. To for the symmetric case. M = 10. 

1 .a 

0.5 

O 0.5 1 .o 
r 

FIGURE 5. Insulated horizontal walls. wo/r for the symmetric case. M = 5. 
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FIGURE 6. Insulated horizontal walls. w,/r for the symmetric case. M = 10. 

1 0.70 /- 

FIGURE 7. 

I I I 
0.5 1 .o 0 
r 

Insulated horizontal walls. q,/r for the antisymmetric case. 111 = 10. 

4. Insulated horizontal and conducting vertical walls 
In  this case the Ekman layers have the same structure as in the case dealt with in Q 3. 

This means that the equation for the geostrophic flow is given by (3.20) and the 
boundary conditions at the horizontal surfaces by (3.22a-b).  At the vertical wall, 
however, the boundary condition for the geostrophic flow will be different because the 
perturbation temperature T, (z )  is prescribed instead of the heat flux. It is shown in 
appendix 1 that there cannot be an Ei  layer of order unity in this case. The reason for 
this is that the order unity Ekman layer extensions, which are a pre-requisite for the 
existence of an order unity Ek layer, cannot occur for the same reason as that pro- 
hibiting the order unity Ekman layers. Thus, a situation where (To) =# (T,) cannot 
occur, and one must consequently require that (cf. 3.18) 
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in order to have a well-posed problem. Because of the absence of an order unity Ea 
layer, the geostrophic flow must satisfy 

As in the case discussed in 5 3, one can show that there will be an Ea layer of order E i .  
The E* layer will, however, be of order unity and this implies that the geostrophic flow 

(vo) = 0, r = ro. (4.2) 

must satisfy 

Both the weak Ei layer and the Eg layer are briefly discussed in appendix 1. The 
boundary-value problem to be solved in the present case is thus equation (3.20) and 
the boundary conditions (3.22a-b) and (4.3). It should be noted that the boundary 
condition (4.3) becomes the same as ( 3 . 2 2 ~ )  if % is zero. In  this special case a con- 
ducting vertical wall is thus equivalent to a thermally insulating vertical wall as far as 
the geostrophic flow is concerned as do figures 1-7 show the geostrophic flow also in 
the present problem. The flow in the vertical boundary layers, though, will be diff- 
erent, as is discussed in some detail in appendix 1.  No calculations were carried out for 
cases where T, is non-zero. 

5. Conducting horizontal and insulating vertical walls 

flow is, as expected, the same as in the case where all boundaries are conducting, i.e. 
The Ekman layers are in this case of order unity and the equation for the geostrophic 

where v+, T, and v-, T- are the prescribed swirl velocities and temperatures a t  the top 
and bottom walls respectively. Equation (5.1) has for the general case been derived 
independently, by Howard (private communication) and Hashimoto (1  977) and, for 
the case where the forcing is antisymmetric, by Sakurai & Matsuda (1974). The relation 
between the geostrophic swirl velocity and temperature fields is given by (3.5) where 
po in this case is given by 

r 
dr 2 
- _  dqo - v++v---(T++T-). 

It can also be shown that the boundary conditions for the geostrophic flow on the 
horizontal walls are given bv 

The boundary condition a t  the insulated vertical wall is, of course, given by ( 3 . 2 2 ~ ) .  
It should be noted that the lowest-order Ekman layers disappear if the forcing is 

symmetric (cf. 5.2).  A similar situation occurs in the corresponding homogeneous 
fluid case (Stewartson 1957), where both the Ekman layers and the geostrophic flow 
disappear and the flow consists of vertical boundary layers only. In the present case, 
however, there will still be a geostrophic flow. 

Because the vertically averaged geostrophic temperature field in general is non- 
zero, there is an E )  layer of order Eb- a t  the vertical boundary as well as a,n E t  layer of 
order E*. It is shown in appendix 1 that there is also a stronger E* layer of order EB if 
the forcing is antisymmetric. 
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FIGURE 8. Conducting horizontal walls and an insulated vertical wall. v0/r for the symmetric 
case. fW = 10. 

I 
0 0.5 1 .o 

FIGURE 9. Conducting horizontal walls and an insulated vert,ical wall. v0/r for the antisymmetric 
case. hl  = 10. 

r 

Some numerical results are shown in figures 8 and 9. Numerical experiments showed 
that the local angular velocity field vo/ r  depends rather weakly on the Mach number in 
the symmetric case whereas this was not so for the antisymmetric case. This can be 
interpreted a,s a manifestation of the fact that the Ekman suction, which depends 
strongly on the Mach number, disappears to lowest order in the symmetric case. 

6. Comparison with earlier work and conclusions 
A detailed comparison between the methods and results given by Matsuda et al. 

(1976), Matsuda & Hashimoto (1976, 1978) and Matsuda & Takeda (1978) and those 
givep in the present work would be rather lengthy. Only a brief discussion of some 
main differences and similarities will therefore be given. 

The method given in the present work can be used for any gas for any sufficiently 
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z 

0 0.5 
r 

1 .o 

FIGURE 10. Conducting horizontal walls and an insulated vertical wall. 
A 1  = 0.1. 

To for the symmetric case. 

small Ekman number whereas the earlier methods rely on a ?elation of the form (1.1) 
between the ratio of the specific heats at constant pressure and volume and the Ekman 
number. The present method can also be used for any finite Mach number whereas the 
earlier methods are low Mach number or, which turns out to be equivalent, heavy gas 
approximations. In  the paper by Matsuda et al. (1976), who considered an antisym- 
metric, thermally driven flow in a container having conducting horizontal walls and 
an insulating vertical wall, the limit where the Ekman number approaches zero, and 
y - 1 remains small but fixed, was calculated as a special case (a = co in their notation). 
That solution (see Matsuda et al. 1976, figure 3 a  on p. 392) has very much the same 
character as the solutions given in this work and the lowest order E* layer was indeed 
found to disappear. However, no indication of the presence of a weaker ES layer was 
given and it is therefore not entirely obvious how the geostrophic flow was calculated 
because it cannot fulfil both the kinematical and the thermal boundary conditions a t  
the vertical wall. 

It should be pointed out that the earlier results showed that the boundary layer 
flows, although these were assumed to be of order unity, became weaker near insulating 
surfaces compared to those occurring near conducting surfaces. This trend is further 
amplified in the present results, where all boundary layers near insulating surfaces are 
of higher order. 

A quantitative comparison between results from the two types of expansion 
schemes can be made from figure 10 in this work and figure 3 a  on p. 454 in the paper by 
Matsuda & Takeda (1978). Both graphs show the isotherms in a symmetric low-Mach- 
number geostrophic flow having conducting horizontal walls and an insulating vertical 
wall, i.e. the kind of container dealt with in 3 5. In  this case the vertical wall rotates 
faster than the horizontal walls. There are obviously differences of order unity between 
the two graphs. The main reason for these differences is the different boundary con- 
ditions a t  the vertical wall, which introduces a-singularity in the corner in the present 
solution whereas no such singularity occurs in the solution given by Matsuda & Takeda 
(1978). Furthermore, the angle between the isotherms and the vertical wall can be 
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non-zero in the solution given by Matsuda & Takeda (1978). In  the present solution the 
vertical wall coincides with the T = 2 isotherm. 

Another consequence of the fact that the Ekman suction is of order E if the horizon- 
tal boundaries are insulating is that there will be no response on the Q-lE-4 time scale 
of the gas in the interior parts of the container to a sudden change .of the rotation rate 
of the container. Such a response was calculated by Bark, Meijer & Cohen (1978) for a 
container having conducting boundaries. If the horizontal boundaries are insulating, 
the main part of the gas will respond only on the diffusive time scale. Work on this 
problem is in progress and will be reported in the future. 

The authors are grateful to Professors Louis N. Howard, Willem V. R. Malkus and 
M&rten T. Landahl for many illuminating discussions of the problems considered in 
this paper. 

Appendix 1. Vertical boundary layers 
In  this appendix some details of the E+ layer will be given. The E i  layer will be 

discussed very briefly a t  the end. For the E+ layer, only the formulation of the bound- 
ary-value problems to be solved will be given. The solution of these boundary-value 
problems by separation of variables is straightforward and can be carried out in the 
manner given by, for example, Sakurai & Matsuda (1974). 

It is assumed in this work that the variation of the basic density field is negligible 
within the Ei layer. This means that poo = 1 in both the E+ and E i  layers. In  the E* 
layer, a stretched co-ordinate <, defined by 

will be used. It is furthermore assumed that the dependent variables in this layer, 
denoted by tildes, possess asymptotic expansions of the form 

N - 1  

n=O 
(C, v", G, 9, p", p )  = E8 Eni3(C,,v",, G,, @,, pn, pn) + O(ENi3), (A 2) 

where C,,v", etc. are functions of 5 and z. The factor Es serves as a gauge function and is 
introduced for notational convenience. From (2.4u7f), (A 1) and (A 2) one finds the " .  . , . .  
following lowest-order equations : 

Go = f j 0  = 0, 

ac, aG0 
a< az -- +- = 0, 

a2Po 

< - 4a2roG1 = a, 
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From (A 4b) and (A.4e) one finds, after two integrations with respect to .$, the following 
relation : 

(A 5 )  !Po + 2u%060 = 0. 

It turns out to be convenient to introduce a stream function $o(<, z), which is defined 

It can be shown from (A 4a-f), (A 5) and (A 6a-b), after some algebra, that satisfies 
the following equation : 

% + 4 ( l + a 2 r t ) s 0 =  az6 0. 

(A 5)  and (A 7)  were first given in the literature by Sakurai & Matsuda (1974). Next, 
the boundary conditions to be satisfied by the solution of (A 7) have to be formulated. 
For the case dealt with in $3,  the E* layer has to correct the radial temperature 
gradient of the geostrophic flow at the periphery. Thus, 8 = Q in this case. From 
(A 4 b ) ,  (A 5) and (A 6a)  one finds that 

which gives the following boundary condition for $o: 

where To is the geostrophic temperature field. It should be remembered that (To) = 0 
in this case [see (3.18)]. A simple order-of-magnitude analysis shows that a consistent 
expansion of the form given by (A 2) can be constructed if the meridional flow in the 
ES layer fulfils the kinematical condition a t  the periphery, i.e. 

6 0 ( W  = 0, (21 < 1,  (A 10a) 

- ( O , z )  860 = 0, (A lob)  

(A 10a) also means that, to order E f ,  there is no net mass flux to be communicated by 
the E* layer between the top and bottom Ekman layers. Because the swirl velocity in 
the EQ layer is non-zero a t  5 = 0 ,  a geostrophic flow of order E* will be driven by the 
boundary layer. The solution of (A 7)  can only fulfil one boundary condition at  
z = 2 1. It can be shown that, by considering the orders of magnitude of the dependent 
variables in the available correction fields, the axial velocity Go has to fulfil the kine- 
matical boundary condition, thus 

As is well known, (A 11) holds also if every boundary is conducting (e.g. see Sakurai & 
Matsuda 1974) as well as in the homogeneous fluid problem (Stewartson 1957). The 
remaining boundary condition is the requirement of exponential decay of all the 
dependent variables for large values of 5, i.e. 

$ O ( E ,  * 1)  = 0. (A 11)  

Iim R ( E ,  z )  = 0. (A 12) 
5+= 
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The formulation of the boundary-value problem for the E* layer for the case dealt with 
in 5 3 is now complete to lowest order. 

It should be noted that the thermal boundary condition (2.7d) and the no-slip 
condition (2.7b-c) for the horizontal velocity field are not satisfied by the E* layer 
solution at z = & 1. Because the radial velocity is of higher order than the swirl 
velocity (see A 3), it  will be omitted from the discussion. It can be shown that the 
thermal boundary condition can be handled by an Ekman layer extension field of the 
size Et x E* and having the strength EQ. The form of this correction field is, apart from 
a parametric dependence on [, the same as that of the Ekman layer discussed in 9 3 and 
will therefore not be given explicitly. The swirl velocity in the E* layer is corrected a t  
z = & 1 by square-shaped fields of the size E* x E* in the corners between the hori- 
zontal walls and the vertical wall. Correction fields of this kind were discovered by 
Matsuda & Hashimoto (1976) and Matsuda et al. (1976). To describe the flow in these 
regions, another boundary-layer co-ordinate x, defined by 

, 

is introduced. The dependent variables, denoted by double tildes, are assumed to 
possess expansions of the form 

N - 1  - - . . . - - - -  
(G, B ,  G, 9, p", p )  = Es C En13(En, in, gn, &, jn,  pn) + O(ENI3), 

n=O 

where zn, in etc. are assumed to be functions of [ and x. Substitution of (A 14), (A 1)  
and (A 13) into (2,4a-f) gives the following equations for the lowest-order quantities: 

(A 15a) 
- * - ,  -, 
fi, = Go = 9, = p1  = 0, 

(A 15b) 

(A 15c) 

It is readily shown from (3.3a-f) that the force balance in the E* x E* regions is the 
same as that in a geostrophic flow having a negligible pressure. At the vertical wall, 
one finds that Fo has to fulfil the thermal boundary condition (2.7d) because other- 
wise the higher-order corrections would have to take care of a heat source, having a 
strength of order unity, which would lead to an inconsistent expansion. The solution 
of (A 15b-c) thus has to satisfy the following boundary condition: 

&(E, 0) +6)(& f 1) = 0, (A 16a) 

(A 16bj 
I I 

lim Go = lim B, = 0. (A 16c) 
x flxed 5 fixed 
5+* X+* 

It should be noted that the solution of (A 15b-c) and (A 16u-c) in general does not 
fulfil the thermal boundary condition (2.7d) at x = 0. However, this discrepancy can 
be removed by Ekman layer extensions of order E4. The analysis of the Ef layer is 
terminated at this point. The remaining lowest-order boundary conditions to be ful- 
filled by the higher approximations are the non-zero values of So a t  the vertical wall 
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near the top and bottom. From the point of view of the geostrophic flow, this appears 
as concentrated sources of angular momentum of strength EP in the corners. It is 
indeed very reasonable to assume that the response of the gas to such sources will be of 
higher order. 

For the case discussed in $4,  the E* layer has to correct the part of the geostrophic 
swirl velocity field which has zero vertical average, and the geostrophic temperature 
field, whose vertical average in this case is identically zero. This means that s = 0 in 
this case. The following boundary conditions must consequently be fulfilled: 

(A 17a) 

PO(0, z )  +G(ro, 2) = W), (A 17b) 

where T,  is the prescribed temperature at  the periphery. From (A 5), (A 17a-b), 

d,(O, 4 +“o(r,, 4 - (“OPO, 4 )  = 0, IzJ < 1, 

(21 < 1, 

From (A 18), (A 17a) and (A 5 )  one can thenreadilyderive (4.3). (A 18) can, according 
to (A 8), be expressed in terms of $o as follows: 

Also in this case the E* layer solution must satisfy (A 10a-b), (A 11)  and (A 12). The 
formulation of the boundary-value problem for the E* layer for the case discussed in 
$ 4 is now complete to lowest order, It can be shown that Ekman layer extensions and 
E# x E* regions will appear in a similar way to  the previous case. 

An E* layer resembling that appearing in the case discussed in Q 3 will appear also in 
the case discussed in $ 5 although the geostrophic flow, whose temperature gradient is 
to be corrected by the E* layer, is different. However, in the antisymmetric case dis- 
cussed in 8 5 ,  there is also a stronger E* layer. This layer communicates the mass flux 
between the Ekman layers and is consequently of order EB. In  order to derive the 
boundary conditions for this layer one needs the Ekman suction formula, which can be 
derived from (3.10u-c) and ( 3 . 3 4 ,  One finds for the antisymmetric caae 

For the symmetric case, i t  can be shown that the lowest-order Ekman layers dis- 
appear. After calculating the net mass flux to be transported by the EB layer from 
(A ZO), one finds that (A 10a) is to be replaced by 

The temperature gradient at ( = 0 has to be zero in this layer, which, according to 
(A 8), gives 

jom %(g,z)dg a2 = 0, 121 < 1. (A 22) 

The boundary conditions for this Es layer are thus given by (A 21)-(A 22), (A lob), 
(A 11) and (A 12). Because the swirl velocity in this layer is non-zero at E = 0, a 
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geostrophic flow of order Eiwill occur. As in the previous cases, Ekman layer extensions 
will occur. To lowest order, however, no E* x E* regions appear to be present. 

For the E* layer at an insulated vertical boundary, i t  can be shown that the bound- 
ary conditions for the boundary-layer solution are similar to the ones for the E* layer 
although the two layers are quite different. One consequently finds that the verti- 
cally averaged geostrophic swirl velocity field satisfies the kinematical boundary 
condition (v,,) = 0, whereas the vertically averaged radial temperature gradient of the 
geostrophic flow is corrected by an Ea layer of order E*. The case discussed in 0 3 is, in 
this respect, exceptional as the vertically averaged geostrophic temperature field 
happens to be zero everywhere. The boundary-value problems for the Ekman layer 
extensions and the E )  x E* regions can also be derived in essentially the same way as 
for their counterparts in the E* layer case. Further details of such weak E )  layers are 
given by Hultgren (1 978). 

The E* layer in the case discussed in $4, i.e. a conducting vertical wall with a pre- 
scribed temperature distribution and insulated top and bottom walls, deserves some 
detailed comments. To calculate the flow in that layer, a stretched radial co-ordinate, 
7, as usual defined by ro - r  7=- 

E* ’ 
is to be used. The dependent variables, which are denoted by overbars, are assumed to 
possess asymptotic expansions of the form 

N-1 
(U, V ,  W, p ,  p ,  F )  = Es r, En14(Un, Cn,  En, p,, p,, Tn) + O(EN4). 

u, = u1 = w, = p ,  = 0. 

(A 24) 

(A 25) 

n-0 

From (2.4a-f), (A 23) and (A 24) one finds that 

In  addition to the Ekman layer extensions, one must also construct E )  x E )  regions of 
the kind discovered by Matsuda & Hashimoto (1978) in order to satisfy the boundary 
conditions at the top and bottom walls. In  these E i  x E* regions, the stretched axial 
co-ordinate 8, which is defined by 

_ _ _ _  

is used in addition to 7. The dependent variables, which are denoted by double over- 
bars, are assumed to possess asymptotic expansions of the form 

N - 1  

n=O 
(Z, Z, E,  F ,  F ,  F )  = E3 C En/4(En, Z n ,  Zn, Fn,Fn, Tn) + O(ENI4). 

u, = u1 = w, = w1 = po  = TI = 0, 

(A 27) 

From (2.4a-f), (A 26) and (A 27) it follows that 
_ _ = _ _  (A 28a) 
- -  - -  

(A 28 b )  

(A 28c) 

The very close analogy between (A 15b-c) and (A 28b-c) should be noted. It means 
that the physical character of the flow in the E* x E* and E )  x Ea regions is the same, 
i.e. a degenerate form of a geostrophic flow. 
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Suppose now that there is a Ea layer of order unity and that the axial and swirl 
velocities in this layer at the top and bottom are corrected by Ekman layer extensions 
of order unity. This means that the axial temperature gradient of order E-4 in these 
Ekman layer extensions at the insulated top and bottom walls has to be corrected by 
Ef x Ef regions of order E-4. Because the solution of (A 28 b-c) can only fulfil one 
boundary condition a t  8 = 0, 0 < 7 < co, this gives a non-zero value, of order E-4, of 
the swirl velocity for these values of 8 and 7. As there are no further correction fields 
available, this form of the expansion has to be discarded. If one tries to correct the 
swirl velocity a t  the top and bottom of an order unity E4 layer with Ea x E4 regions of 
order unity and the axial temperature gradient in these regions by Ekman layer exten- 
sions of order E3, one finds that the axial velocity of the E* layer cannot be corrected. 
This means that, for the class of limit solutions considered in the present work, an E )  
layer of order unity cannot exist a t  a conducting vertical boundary between insulated 
top and bottom walls. As a consequence, the boundary condition given by the averaged 
temperature distribution on such a vertical wall has to be satisfied by the geostrophic 
flow. There will, however, be an Ef layer of order EB to handle the mass flux from the 
geostrophic flow. One finds that this weak Et'layer has Ekman layer extensions of 
order E4. There will also be E4 x E) regions of order E4 to correct the axial tempera- 
ture gradient of the weak Ekman layer extensions at the top and bottom. This set of 
correction fields is very similar to that constructed by Matsuda & Hashimoto (1978). 
The remaining boundary condition to be taken care of by higher-order correction fields, 
which are not considered in this work, is a non-zero value of the swirl velocity of order 
E i  at z = f 1, 7 = O(1).  On the length scale given by the size of the container, this 
uncorrected swirl velocity will appear as a concentrated ring source of angular momen- 
tum of strength E4 and can therefore on reasonable grounds be neglected as far as the 
lowest order part of the geostrophic flow is concerned. 

It should be pointed out that there may well be an E* layer of order unity in the case 
discussed in § 3. The reason for this is that the E# layer does not have to be connected 
to Ekman layer extensions of the same order as the E* layer itself [cf. the discussion 
in connexion with (A 13)-(A lSc)]. For the Ef layer, however, this has to be the case. 

Appendix 2. Computational method 
The integro-partial-differential equation (3.20) and the non-homogeneous partial- 

differential equation ( 5 .  I ) ,  both subject to the appropriate boundary conditions, were 
solved by using finite difference schemes. It turns out to be somewhat more convenient 
to solve for the local angular velocity field, w = vo/r, than for the swirl velocity 
field. With r = (n - 1) h and z = (m - 1) k the following finite difference approxima- 
tions were utilized for the derivatives: 
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and the integral in (3.20) was evaluated by means of the trapezoidal rule. Equations 
(3.20) and (5 .1)  become 

n = 2 , N ,  m = 2 , M  ( B 2 )  
and 

respectively, where 

n = 2 , N ,  m = 2, M ,  

(T,+T-)]) at r = ( n - l ) h ,  z = ( m - I ) L ,  ( B 4 e )  

and Si, is the Kronecker delta. 
Equations ( B  2)  and (B 3)  hold for all interior points. The remaining 2(M + N )  

eqGations needed in each case are obtained from the boundary conditions. In  particu- 
lar, it is easily shown that = 0 at r = 0, i.e. 

W1.m = %,m, m =  2 , M .  ( B  5 )  

In  the actual calculations the stepsizes h = 0.05 and k = 0-1 were chosen. The accuracy 
of each calculation was controlled by a subsequent calculation using twice the stepsize 
in each direction. 

The accuracy of the finite difference scheme was, for the antisymmetric case, com- 
pared with a series solution obtained by separation of variables of the same kind as the 
solution given by Bark & Bark (1978)  for finite but otherwise arbitrary Mach numbers. 
Such solutions converge rapidly in the antisymmetric case and a four-digit agreement 
was found. For the symmetric case, however, the series solution obtained by separa- 
tion of variables did not converge. 
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